TensorFlow:tf.scatter_nd_sub函數(shù)

2018-01-06 11:25 更新

tf.scatter_nd_sub 函數(shù)

scatter_nd_sub(
    ref,
    indices,
    updates,
    use_locking=False,
    name=None
)

請參閱指南:變量>稀疏變量更新

在updates和單個(gè)值或切片之間應(yīng)用稀疏減法,根據(jù)indices在給定的變量內(nèi).

ref是一個(gè)秩為P的Tensor,indices是一個(gè)秩為Q的Tensor.

indices必須是整數(shù)張量,包含索引到ref.它一定有形狀:[d_0, ..., d_{Q-2}, K],并且是:0<K<=P.

indices(具有長度K)的最內(nèi)部維度對應(yīng)于沿著ref的K維度的元素(if K = P)或切片(if K < P)的索引.

updates是具有形狀的秩為Q-1+P-K的Tensor:

[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]

例如, 假設(shè)我們要從 rank-1 張量中減去4個(gè)分散的元素,或者8個(gè)元素.在 Python 中,該減法看起來像這樣:

ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
sub = tf.scatter_nd_sub(ref, indices, updates)
with tf.Session() as sess:
  print sess.run(sub)

對ref的結(jié)果更新如下所示:

[1, -9, 3, -6, -4, 6, 7, -4]

請參閱tf.scatter_nd有關(guān)如何更新切片的更多詳細(xì)信息.

參數(shù)

  • ref:一個(gè)可變的Tensor;必須是下列類型之一:float32,float64,int64,int32,uint8,uint16,int16,int8,complex64,complex128,qint8,quint8,qint32,half;應(yīng)該來自一個(gè)變量節(jié)點(diǎn).
  • indices:一個(gè)Tensor;必須是以下類型之一:int32,int64;索引到ref的一個(gè)張量.
  • updates:一個(gè)Tensor.必須與ref具有相同的類型.從ref中減去更新值的張量.
  • use_locking:可選的bool;如果為True,則賦值將受鎖定的保護(hù);否則行為是不確定的,但可能表現(xiàn)出較少的爭用.
  • name:操作的名稱(可選).

返回值

該函數(shù)將返回一個(gè)可變的Tensor.與ref具有相同的類型.與 ref 一樣,返回為希望在更新完成后使用更新的值的操作的方便性.

以上內(nèi)容是否對您有幫助:
在線筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號
微信公眾號

編程獅公眾號