W3Cschool
恭喜您成為首批注冊用戶
獲得88經(jīng)驗值獎勵
#版權所有2015 TensorFlow作者.版權所有.
#
#根據(jù)Apache許可證2.0版(“許可證”)許可;
#你不能使用這個文件,除非符合許可證.
#您可以獲得許可證的副本
#
#http ://www.apache.org/licenses/LICENSE-2.0
#
#除非適用法律要求或書面同意軟件
根據(jù)許可證分發(fā)的#分發(fā)在“按原樣”基礎上,
#無明示或暗示的任何形式的擔?;驐l件.
#查看有關權限的特定語言的許可證
#許可證下的限制.
# =============================================== =============================
""變量請參閱@ {python / state_ops}指南.""
@@Variable
@@global_variables
@@local_variables
@@model_variables
@@trainable_variables
@@moving_average_variables
@@global_variables_initializer
@@local_variables_initializer
@@variables_initializer
@@is_variable_initialized
@@report_uninitialized_variables
@@assert_variables_initialized
@@assign
@@assign_add
@@assign_sub
@@Saver
@@latest_checkpoint
@@get_checkpoint_state
@@update_checkpoint_state
@@get_variable
@@get_local_variable
@@VariableScope
@@variable_scope
@@variable_op_scope
@@get_variable_scope
@@make_template
@@no_regularizer
@@constant_initializer
@@random_normal_initializer
@@truncated_normal_initializer
@@random_uniform_initializer
@@uniform_unit_scaling_initializer
@@zeros_initializer
@@ones_initializer
@@orthogonal_initializer
@@fixed_size_partitioner
@@variable_axis_size_partitioner
@@min_max_variable_partitioner
@@scatter_update
@@scatter_add
@@scatter_sub
@@scatter_mul
@@scatter_div
@@scatter_nd_update
@@scatter_nd_add
@@scatter_nd_sub
@@sparse_mask
@@IndexedSlices
@@initialize_all_tables
@@tables_initializer
@@export_meta_graph
@@import_meta_graph
@@all_variables
@@initialize_all_variables
@@initialize_local_variables
@@initialize_variables
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import gen_resource_variable_ops
from tensorflow.python.ops import gen_state_ops
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_state_ops import *
# pylint: enable=wildcard-import
# pylint: disable=protected-access,g-doc-return-or-yield,g-doc-args
def variable_op(shape, dtype, name="Variable", set_shape=True, container="",
shared_name=""):
"""Deprecated. Used variable_op_v2 instead."""
if not set_shape:
shape = tensor_shape.unknown_shape()
ret = gen_state_ops._variable(shape=shape, dtype=dtype, name=name,
container=container, shared_name=shared_name)
# TODO(mrry): Move this to where it is used, so we can get rid of this op
# wrapper?
if set_shape:
ret.set_shape(shape)
return ret
def variable_op_v2(shape, dtype, name="Variable", container="", shared_name=""):
"""Create a variable Operation.
See also variables.Variable.
Args:
shape: The shape of the tensor managed by this variable
dtype: The underlying type of the tensor values.
name: optional name to use for the variable op.
container: An optional string. Defaults to "".
If non-empty, this variable is placed in the given container.
Otherwise, a default container is used.
shared_name: An optional string. Defaults to "".
If non-empty, this variable is named in the given bucket
with this shared_name. Otherwise, the node name is used instead.
Returns:
A variable tensor.1;5A
"""
return gen_state_ops._variable_v2(shape=shape,
dtype=dtype,
name=name,
container=container,
shared_name=shared_name)
def init_variable(v, init, name="init"):
"""Initializes variable with "init".
This op does the following:
if init is a Tensor, v = init
if callable(init): v = init(VariableShape(v), v.dtype)
Args:
v: Variable to initialize
init: Tensor to assign to v,
Or an object convertible to Tensor e.g. nparray,
Or an Initializer that generates a tensor given the shape and type of v.
An "Initializer" is a callable that returns a tensor that "v" should be
set to. It will be called as init(shape, dtype).
name: Optional name for the op.
Returns:
The operation that initializes v.
"""
with ops.name_scope(None, v.op.name + "/", [v, init]):
with ops.name_scope(name) as scope:
with ops.colocate_with(v):
if callable(init):
assert v.get_shape().is_fully_defined(), "Variable shape unknown."
# TODO(mrry): Convert to v.shape when the property and
# accessor are reconciled (and all initializers support
# tf.TensorShape objects).
value = init(v.get_shape().as_list(), v.dtype.base_dtype)
value = ops.convert_to_tensor(value, name="value")
return gen_state_ops.assign(v, value, name=scope)
else:
init = ops.convert_to_tensor(init, name="init")
return gen_state_ops.assign(v, init, name=scope)
def is_variable_initialized(ref, name=None):
"""Checks whether a tensor has been initialized.
Outputs boolean scalar indicating whether the tensor has been initialized.
Args:
ref: A mutable `Tensor`.
Should be from a `Variable` node. May be uninitialized.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `bool`.
"""
if ref.dtype._is_ref_dtype:
return gen_state_ops.is_variable_initialized(ref=ref, name=name)
# Handle resource variables.
if ref.op.type == "VarHandleOp":
return gen_resource_variable_ops.var_is_initialized_op(ref.handle,
name=name)
def assign_sub(ref, value, use_locking=None, name=None):
"""Update 'ref' by subtracting 'value' from it.
This operation outputs "ref" after the update is done.
This makes it easier to chain operations that need to use the reset value.
Args:
ref: A mutable `Tensor`. Must be one of the following types:
`float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`,
`int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
Should be from a `Variable` node.
value: A `Tensor`. Must have the same type as `ref`.
The value to be subtracted to the variable.
use_locking: An optional `bool`. Defaults to `False`.
If True, the subtraction will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.
name: A name for the operation (optional).
Returns:
Same as "ref". Returned as a convenience for operations that want
to use the new value after the variable has been updated.
"""
if ref.dtype._is_ref_dtype:
return gen_state_ops.assign_sub(
ref, value, use_locking=use_locking, name=name)
return ref.assign_sub(value)
def assign_add(ref, value, use_locking=None, name=None):
"""Update 'ref' by adding 'value' to it.
This operation outputs "ref" after the update is done.
This makes it easier to chain operations that need to use the reset value.
Args:
ref: A mutable `Tensor`. Must be one of the following types:
`float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`,
`int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
Should be from a `Variable` node.
value: A `Tensor`. Must have the same type as `ref`.
The value to be added to the variable.
use_locking: An optional `bool`. Defaults to `False`.
If True, the addition will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.
name: A name for the operation (optional).
Returns:
Same as "ref". Returned as a convenience for operations that want
to use the new value after the variable has been updated.
"""
if ref.dtype._is_ref_dtype:
return gen_state_ops.assign_add(
ref, value, use_locking=use_locking, name=name)
return ref.assign_add(value)
def assign(ref, value, validate_shape=None, use_locking=None, name=None):
"""Update 'ref' by assigning 'value' to it.
This operation outputs a Tensor that holds the new value of 'ref' after
the value has been assigned. This makes it easier to chain operations
that need to use the reset value.
Args:
ref: A mutable `Tensor`.
Should be from a `Variable` node. May be uninitialized.
value: A `Tensor`. Must have the same type as `ref`.
The value to be assigned to the variable.
validate_shape: An optional `bool`. Defaults to `True`.
If true, the operation will validate that the shape
of 'value' matches the shape of the Tensor being assigned to. If false,
'ref' will take on the shape of 'value'.
use_locking: An optional `bool`. Defaults to `True`.
If True, the assignment will be protected by a lock;
otherwise the behavior is undefined, but may exhibit less contention.
name: A name for the operation (optional).
Returns:
A `Tensor` that will hold the new value of 'ref' after
the assignment has completed.
"""
if ref.dtype._is_ref_dtype:
return gen_state_ops.assign(
ref, value, use_locking=use_locking, name=name,
validate_shape=validate_shape)
return ref.assign(value)
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: