統(tǒng)計 - 可靠性系數(shù)

2018-12-28 10:08 更新

通過測量相同的個體兩次并計算兩組測量的相關(guān)性而獲得的測試或測量儀器的精度的測量。

可靠性系數(shù)由以下函數(shù)定義和給出:

$ {Reliability \\ Coefficient,\\ RC =(\\ frac {N} {(N-1)})\\ times(\\ frac {(Total \\ Variance \\ - Sum \\ of \\ Variance)} {

其中 -

  • $ {N} $ =任務(wù)數(shù)

例子

問題陳述:

經(jīng)歷了三個人(P)的承諾,他們被分配三個不同的任務(wù)(T)。 發(fā)現(xiàn)可靠性系數(shù)?

P0-T0 = 10 
P1-T0 = 20 
P0-T1 = 30 
P1-T1 = 40 
P0-T2 = 50 
P1-T2 = 60 

解決方案:

給定,學(xué)生數(shù)量(P)= 3任務(wù)數(shù)量(N)= 3.要查找,可靠性系數(shù),請按照以下步驟操作:

步驟1

給我們一個機(jī)會,先計算人和他們的任務(wù)的平均分

The average score of Task (T0) = 10 + 20/2 = 15 
The average score of Task (T1) = 30 + 40/2 = 35 
The average score of Task (T2) = 50 + 60/2 = 55 

第2步

接下來,計算方差:

Variance of P0-T0 and P1-T0: 
Variance = square (10-15) + square (20-15)/2 = 25
Variance of P0-T1 and P1-T1: 
Variance = square (30-35) + square (40-35)/2 = 25
Variance of P0-T2 and P1-T2: 
Variance = square (50-55) + square (50-55)/2 = 25 

步驟3

現(xiàn)在,示出P sub和Sub Sub的每一個的方差,其中P sub,0, > 0 -T 1 和P 1 -T 1 ,P > 2和P sub 1 -T sub 2。 為了確定單個方差值,我們應(yīng)該包括所有上述計算的變化值。

Total of Individual Variance = 25+25+25=75 

步驟4

計算總變化

Variance= square ((P0-T0) 
 - normal score of Person 0) 
 = square (10-15) = 25
Variance= square ((P1-T0) 
 - normal score of Person 0) 
 = square (20-15) = 25 
Variance= square ((P0-T1) 
 - normal score of Person 1) 
 = square (30-35) = 25 
Variance= square ((P1-T1) 
 - normal score of Person 1) 
 = square (40-35) = 25
Variance= square ((P0-T2) 
 - normal score of Person 2) 
 = square (50-55) = 25 
Variance= square ((P1-T2) 
- normal score of Person 2) 
 = square (60-55) = 25 

現(xiàn)在,包括每一個質(zhì)量,并計算總的變化

Total Variance= 25+25+25+25+25+25 = 150  

步驟5

最后,用下面提供的方程中的質(zhì)量代替發(fā)現(xiàn)

${Reliability\ Coefficient,\ RC = (\frac{N}{(N-1)}) \times (\frac{(Total\ Variance\ - Sum\ of\ Variance)}{Total Variance}) \\[7pt] = \frac{3}{(3-1)} \times \frac{(150-75)}{150} \\[7pt] = 0.75 }$

以上內(nèi)容是否對您有幫助:
在線筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號
微信公眾號

編程獅公眾號