W3Cschool
恭喜您成為首批注冊用戶
獲得88經(jīng)驗(yàn)值獎勵
通過測量相同的個體兩次并計算兩組測量的相關(guān)性而獲得的測試或測量儀器的精度的測量。
可靠性系數(shù)由以下函數(shù)定義和給出:
$ {Reliability \\ Coefficient,\\ RC =(\\ frac {N} {(N-1)})\\ times(\\ frac {(Total \\ Variance \\ - Sum \\ of \\ Variance)} {
其中 -
$ {N} $ =任務(wù)數(shù)
問題陳述:
經(jīng)歷了三個人(P)的承諾,他們被分配三個不同的任務(wù)(T)。 發(fā)現(xiàn)可靠性系數(shù)?
P0-T0 = 10 P1-T0 = 20 P0-T1 = 30 P1-T1 = 40 P0-T2 = 50 P1-T2 = 60
解決方案:
給定,學(xué)生數(shù)量(P)= 3任務(wù)數(shù)量(N)= 3.要查找,可靠性系數(shù),請按照以下步驟操作:
給我們一個機(jī)會,先計算人和他們的任務(wù)的平均分
The average score of Task (T0) = 10 + 20/2 = 15 The average score of Task (T1) = 30 + 40/2 = 35 The average score of Task (T2) = 50 + 60/2 = 55
接下來,計算方差:
Variance of P0-T0 and P1-T0: Variance = square (10-15) + square (20-15)/2 = 25 Variance of P0-T1 and P1-T1: Variance = square (30-35) + square (40-35)/2 = 25 Variance of P0-T2 and P1-T2: Variance = square (50-55) + square (50-55)/2 = 25
現(xiàn)在,示出P sub和Sub Sub的每一個的方差,其中P sub,0, > 0 -T 1 和P 1 -T 1 ,P > 2和P sub 1 -T sub 2。 為了確定單個方差值,我們應(yīng)該包括所有上述計算的變化值。
Total of Individual Variance = 25+25+25=75
計算總變化
Variance= square ((P0-T0) - normal score of Person 0) = square (10-15) = 25 Variance= square ((P1-T0) - normal score of Person 0) = square (20-15) = 25 Variance= square ((P0-T1) - normal score of Person 1) = square (30-35) = 25 Variance= square ((P1-T1) - normal score of Person 1) = square (40-35) = 25 Variance= square ((P0-T2) - normal score of Person 2) = square (50-55) = 25 Variance= square ((P1-T2) - normal score of Person 2) = square (60-55) = 25
現(xiàn)在,包括每一個質(zhì)量,并計算總的變化
Total Variance= 25+25+25+25+25+25 = 150
最后,用下面提供的方程中的質(zhì)量代替發(fā)現(xiàn)
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: