W3Cschool
恭喜您成為首批注冊(cè)用戶
獲得88經(jīng)驗(yàn)值獎(jiǎng)勵(lì)
在本教程中,您將學(xué)習(xí)如何:
對(duì)于Hough 變換,我們將在極地系統(tǒng)中表達(dá)線條。因此,線性方程可以寫為:
排列術(shù)語:r=xcosθ+ysinθ
意思是每一對(duì)的 (rθ,θ)表示通過每一排的 (x0,y0)
我們只需考慮這樣的情況: r>0 和 0<θ<2π.
三個(gè)曲線在一個(gè)點(diǎn)(0.925,9.6)相交,這些坐標(biāo)是參數(shù) ( θ,r) 或其中(x0,y0), (x1,y1) 和 (x2,y2) lay.
OpenCV實(shí)現(xiàn)了兩種Hough線變換:
一個(gè)。標(biāo)準(zhǔn)Hough變換
灣 概率霍夫線變換
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates line finding with the Hough transform.\n"
"Usage:\n"
"./houghlines <image_name>, Default is ../data/pic1.png\n" << endl;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
"{help h||}{@image|../data/pic1.png|}"
);
if (parser.has("help"))
{
help();
return 0;
}
string filename = parser.get<string>("@image");
if (filename.empty())
{
help();
cout << "no image_name provided" << endl;
return -1;
}
Mat src = imread(filename, 0);
if(src.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, COLOR_GRAY2BGR);
#if 0
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
#else
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
}
#endif
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
return 0;
}
Mat src = imread(filename, 0);
if(src.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
Canny(src,dst,50,200,3);
現(xiàn)在我們將應(yīng)用Hough Line變換。我們將解釋如何使用可用于此目的的兩個(gè)OpenCV功能:
首先,你應(yīng)用變換:
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
具有以下參數(shù):
然后通過繪制線條顯示結(jié)果。
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
}
首先你應(yīng)用變換:
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
有論據(jù):
然后通過繪制線條顯示結(jié)果。
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
}
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
使用輸入圖像,如:
我們通過使用Probabilistic Hough Line變換得到以下結(jié)果:
您可能會(huì)發(fā)現(xiàn)在更改閾值時(shí)檢測(cè)到的行數(shù)會(huì)有所不同。解釋很明顯:如果建立更高的Threshold,將檢測(cè)到更少的行(因?yàn)槟枰嗟狞c(diǎn)來聲明檢測(cè)到的行)。
Copyright©2021 w3cschool編程獅|閩ICP備15016281號(hào)-3|閩公網(wǎng)安備35020302033924號(hào)
違法和不良信息舉報(bào)電話:173-0602-2364|舉報(bào)郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號(hào)
聯(lián)系方式:
更多建議: