W3Cschool
恭喜您成為首批注冊用戶
獲得88經(jīng)驗值獎勵
在本教程中,您將學(xué)習(xí)如何使用OpenCv_dnn模塊進行圖像分類,方法是使用來自Caffe模型動物園的 GoogLeNet訓(xùn)練網(wǎng)絡(luò)。
我們將在下面的圖片中展示這個例子的結(jié)果。
布蘭航天飛機
我們將使用示例應(yīng)用程序的片段,可以在這里下載。
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/utils/trace.hpp>
using namespace cv;
using namespace cv::dnn;
#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;
/* Find best class for the blob (i. e. class with maximal probability) */
static void getMaxClass(const Mat &probBlob, int *classId, double *classProb)
{
Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix
Point classNumber;
minMaxLoc(probMat, NULL, classProb, NULL, &classNumber);
*classId = classNumber.x;
}
static std::vector<String> readClassNames(const char *filename = "synset_words.txt")
{
std::vector<String> classNames;
std::ifstream fp(filename);
if (!fp.is_open())
{
std::cerr << "File with classes labels not found: " << filename << std::endl;
exit(-1);
}
std::string name;
while (!fp.eof())
{
std::getline(fp, name);
if (name.length())
classNames.push_back( name.substr(name.find(' ')+1) );
}
fp.close();
return classNames;
}
int main(int argc, char **argv)
{
CV_TRACE_FUNCTION();
String modelTxt = "bvlc_googlenet.prototxt";
String modelBin = "bvlc_googlenet.caffemodel";
String imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg";
Net net;
try {
net = dnn::readNetFromCaffe(modelTxt, modelBin);
}
catch (cv::Exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
if (net.empty())
{
std::cerr << "Can't load network by using the following files: " << std::endl;
std::cerr << "prototxt: " << modelTxt << std::endl;
std::cerr << "caffemodel: " << modelBin << std::endl;
std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl;
std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl;
exit(-1);
}
}
Mat img = imread(imageFile);
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
//GoogLeNet accepts only 224x224 BGR-images
Mat inputBlob = blobFromImage(img, 1.0f, Size(224, 224),
Scalar(104, 117, 123), false); //Convert Mat to batch of images
Mat prob;
cv::TickMeter t;
for (int i = 0; i < 10; i++)
{
CV_TRACE_REGION("forward");
net.setInput(inputBlob, "data"); //set the network input
t.start();
prob = net.forward("prob"); //compute output
t.stop();
}
int classId;
double classProb;
getMaxClass(prob, &classId, &classProb);//find the best class
std::vector<String> classNames = readClassNames();
std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl;
std::cout << "Probability: " << classProb * 100 << "%" << std::endl;
std::cout << "Time: " << (double)t.getTimeMilli() / t.getCounter() << " ms (average from " << t.getCounter() << " iterations)" << std::endl;
return 0;
} //main
net = dnn :: readNetFromCaffe(modelTxt,modelBin);
if (net.empty())
{
std::cerr << "Can't load network by using the following files: " << std::endl;
std::cerr << "prototxt: " << modelTxt << std::endl;
std::cerr << "caffemodel: " << modelBin << std::endl;
std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl;
std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl;
exit(-1);
}
Mat img = imread(imageFile);
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
//GoogLeNet accepts only 224x224 BGR-images
Mat inputBlob = blobFromImage(img, 1.0f, Size(224, 224),
Scalar(104, 117, 123), false); //Convert Mat to batch of images
首先,我們調(diào)整圖像的大小并改變其頻道序列順序。
現(xiàn)在圖像實際上是一個具有224x224x3形狀的三維數(shù)組。
接下來,我們通過使用特殊的cv :: dnn :: blobFromImages構(gòu)造函數(shù)將圖像轉(zhuǎn)換為具有1x3x224x224形狀的4維blob(所謂批處理)。
net.setInput(inputBlob, "data"); //set the network input
在bvlc_googlenet.prototxt中,網(wǎng)絡(luò)輸入blob命名為“data”,因此這個blob在opencv_dnn API中標記為“.data”。
其他標記為“name_of_layer.name_of_layer_output”的blob。
prob = net.forward("prob"); //compute output
在計算每個網(wǎng)絡(luò)層的正向傳輸輸出期間,但在本例中,我們僅需要“prob”層的輸出。
int classId;
double classProb;
getMaxClass(prob, &classId, &classProb);//find the best class
我們把包含1000個ILSVRC2012圖像類別的概率的“prob”層的輸出放到prob
blob上。并在此找到具有最大值的元素的索引。該索引對應(yīng)于圖像的類。
std::vector<String> classNames = readClassNames();
std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl;
std::cout << "Probability: " << classProb * 100 << "%" << std::endl;
對于我們的形象我們得到:
Best class: #812 'space shuttle'
Probability: 99.6378%
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: