PyTorch 使用自定義 C ++類擴展 TorchScript

2020-09-10 10:40 更新
原文: https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html

本教程是自定義運算符教程的后續(xù)教程,并介紹了我們?yōu)閷?C ++類同時綁定到 TorchScript 和 Python 而構(gòu)建的 API。 該 API 與 pybind11 非常相似,如果您熟悉該系統(tǒng),則大多數(shù)概念都將轉(zhuǎn)移過來。

在 C ++中實現(xiàn)和綁定類

在本教程中,我們將定義一個簡單的 C ++類,該類在成員變量中保持持久狀態(tài)。

// This header is all you need to do the C++ portions of this
// tutorial
#include <torch/script.h>
// This header is what defines the custom class registration
// behavior specifically. script.h already includes this, but
// we include it here so you know it exists in case you want
// to look at the API or implementation.
#include <torch/custom_class.h>


#include <string>
#include <vector>


template <class T>
struct Stack : torch::jit::CustomClassHolder {
  std::vector<T> stack_;
  Stack(std::vector<T> init) : stack_(init.begin(), init.end()) {}


  void push(T x) {
    stack_.push_back(x);
  }
  T pop() {
    auto val = stack_.back();
    stack_.pop_back();
    return val;
  }


  c10::intrusive_ptr<Stack> clone() const {
    return c10::make_intrusive<Stack>(stack_);
  }


  void merge(const c10::intrusive_ptr<Stack>& c) {
    for (auto& elem : c->stack_) {
      push(elem);
    }
  }
};

有幾件事要注意:

  • torch/custom_class.h是您需要使用自定義類擴展 TorchScript 的標(biāo)頭。
  • 注意,無論何時使用自定義類的實例,我們都通過c10::intrusive_ptr&lt;&gt;的實例來實現(xiàn)。 將intrusive_ptr視為類似于std::shared_ptr的智能指針。 使用此智能指針的原因是為了確保在語言(C ++,Python 和 TorchScript)之間對對象實例進(jìn)行一致的生命周期管理。
  • 注意的第二件事是用戶定義的類必須繼承自torch::jit::CustomClassHolder。 這確保了所有設(shè)置都可以處理前面提到的生命周期管理系統(tǒng)。

現(xiàn)在讓我們看一下如何使該類對 TorchScript 可見,該過程稱為綁定該類:

// Notice a few things:
// - We pass the class to be registered as a template parameter to
//   `torch::jit::class_`. In this instance, we've passed the
//   specialization of the Stack class ``Stack<std::string>``.
//   In general, you cannot register a non-specialized template
//   class. For non-templated classes, you can just pass the
//   class name directly as the template parameter.
// - The single parameter to ``torch::jit::class_()`` is a
//   string indicating the name of the class. This is the name
//   the class will appear as in both Python and TorchScript.
//   For example, our Stack class would appear as ``torch.classes.Stack``.
static auto testStack =
  torch::jit::class_<Stack<std::string>>("Stack")
      // The following line registers the contructor of our Stack
      // class that takes a single `std::vector<std::string>` argument,
      // i.e. it exposes the C++ method `Stack(std::vector<T> init)`.
      // Currently, we do not support registering overloaded
      // constructors, so for now you can only `def()` one instance of
      // `torch::jit::init`.
      .def(torch::jit::init<std::vector<std::string>>())
      // The next line registers a stateless (i.e. no captures) C++ lambda
      // function as a method. Note that a lambda function must take a
      // `c10::intrusive_ptr<YourClass>` (or some const/ref version of that)
      // as the first argument. Other arguments can be whatever you want.
      .def("top", [](const c10::intrusive_ptr<Stack<std::string>>& self) {
        return self->stack_.back();
      })
      // The following four lines expose methods of the Stack<std::string>
      // class as-is. `torch::jit::class_` will automatically examine the
      // argument and return types of the passed-in method pointers and
      // expose these to Python and TorchScript accordingly. Finally, notice
      // that we must take the *address* of the fully-qualified method name,
      // i.e. use the unary `&` operator, due to C++ typing rules.
      .def("push", &Stack<std::string>::push)
      .def("pop", &Stack<std::string>::pop)
      .def("clone", &Stack<std::string>::clone)
      .def("merge", &Stack<std::string>::merge);

使用 CMake 將示例構(gòu)建為 C ++項目

現(xiàn)在,我們將使用 CMake 構(gòu)建系統(tǒng)來構(gòu)建上述 C ++代碼。 首先,將到目前為止介紹的所有 C ++代碼放入class.cpp/文件中。 然后,編寫一個簡單的CMakeLists.txt文件并將其放置在同一目錄中。 CMakeLists.txt的外觀如下:

cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(custom_class)


find_package(Torch REQUIRED)


## Define our library target
add_library(custom_class SHARED class.cpp)
set(CMAKE_CXX_STANDARD 14)
## Link against LibTorch
target_link_libraries(custom_class "${TORCH_LIBRARIES}")

另外,創(chuàng)建一個build目錄。 您的文件樹應(yīng)如下所示:

custom_class_project/
  class.cpp
  CMakeLists.txt
  build/

現(xiàn)在,要構(gòu)建項目,請繼續(xù)從 PyTorch 網(wǎng)站下載適當(dāng)?shù)?libtorch 二進(jìn)制文件。 將 zip 存檔解壓縮到某個位置(在項目目錄中可能很方便),并記下將其解壓縮到的路徑。 接下來,繼續(xù)調(diào)用 cmake,然后進(jìn)行構(gòu)建項目:

$ cd build
$ cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
  -- The C compiler identification is GNU 7.3.1
  -- The CXX compiler identification is GNU 7.3.1
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
  -- Detecting C compiler ABI info
  -- Detecting C compiler ABI info - done
  -- Detecting C compile features
  -- Detecting C compile features - done
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
  -- Detecting CXX compiler ABI info
  -- Detecting CXX compiler ABI info - done
  -- Detecting CXX compile features
  -- Detecting CXX compile features - done
  -- Looking for pthread.h
  -- Looking for pthread.h - found
  -- Looking for pthread_create
  -- Looking for pthread_create - not found
  -- Looking for pthread_create in pthreads
  -- Looking for pthread_create in pthreads - not found
  -- Looking for pthread_create in pthread
  -- Looking for pthread_create in pthread - found
  -- Found Threads: TRUE
  -- Found torch: /torchbind_tutorial/libtorch/lib/libtorch.so
  -- Configuring done
  -- Generating done
  -- Build files have been written to: /torchbind_tutorial/build
$ make -j
  Scanning dependencies of target custom_class
  [ 50%] Building CXX object CMakeFiles/custom_class.dir/class.cpp.o
  [100%] Linking CXX shared library libcustom_class.so
  [100%] Built target custom_class

您會發(fā)現(xiàn),構(gòu)建目錄中現(xiàn)在有一個動態(tài)庫文件。 在 Linux 上,它可能名為libcustom_class.so。 因此,文件樹應(yīng)如下所示:

custom_class_project/
  class.cpp
  CMakeLists.txt
  build/
    libcustom_class.so

從 Python 和 TorchScript 使用 C ++類

現(xiàn)在我們已經(jīng)將我們的類及其注冊編譯為.so文件,我們可以將 <cite>.so</cite> 加載到 Python 中并進(jìn)行嘗試。 這是一個演示腳本的腳本:

import torch


## `torch.classes.load_library()` allows you to pass the path to your .so file
## to load it in and make the custom C++ classes available to both Python and
## TorchScript
torch.classes.load_library("libcustom_class.so")
## You can query the loaded libraries like this:
print(torch.classes.loaded_libraries)
## prints {'/custom_class_project/build/libcustom_class.so'}


## We can find and instantiate our custom C++ class in python by using the
## `torch.classes` namespace:
## ## This instantiation will invoke the Stack(std::vector<T> init) constructor
## we registered earlier
s = torch.classes.Stack(["foo", "bar"])


## We can call methods in Python
s.push("pushed")
assert s.pop() == "pushed"


## Returning and passing instances of custom classes works as you'd expect
s2 = s.clone()
s.merge(s2)
for expected in ["bar", "foo", "bar", "foo"]:
    assert s.pop() == expected


## We can also use the class in TorchScript
## For now, we need to assign the class's type to a local in order to
## annotate the type on the TorchScript function. This may change
## in the future.
Stack = torch.classes.Stack


@torch.jit.script
def do_stacks(s : Stack): # We can pass a custom class instance to TorchScript
    s2 = torch.classes.Stack(["hi", "mom"]) # We can instantiate the class
    s2.merge(s) # We can call a method on the class
    return s2.clone(), s2.top()  # We can also return instances of the class
                                 # from TorchScript function/methods


stack, top = do_stacks(torch.classes.Stack(["wow"]))
assert top == "wow"
for expected in ["wow", "mom", "hi"]:
    assert stack.pop() == expected

使用自定義類保存,加載和運行 TorchScript 代碼

我們也可以在使用 libtorch 的 C ++進(jìn)程中使用自定義注冊的 C ++類。 舉例來說,讓我們定義一個簡單的nn.Module,該實例在我們的 Stack 類上實例化并調(diào)用一個方法:

import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()


    def forward(self, s : str) -> str:
        stack = torch.classes.Stack(["hi", "mom"])
        return stack.pop() + s


scripted_foo = torch.jit.script(Foo())
print(scripted_foo.graph)


scripted_foo.save('foo.pt')

我們文件系統(tǒng)中的foo.pt現(xiàn)在包含我們剛剛定義的序列化 TorchScript 程序。

現(xiàn)在,我們將定義一個新的 CMake 項目,以展示如何加載此模型及其所需的.so 文件。 有關(guān)如何執(zhí)行此操作的完整說明,請查看在 C ++教程中加載 TorchScript 模型。

與之前類似,讓我們創(chuàng)建一個包含以下內(nèi)容的文件結(jié)構(gòu):

cpp_inference_example/
  infer.cpp
  CMakeLists.txt
  foo.pt
  build/
  custom_class_project/
    class.cpp
    CMakeLists.txt
    build/

請注意,我們已經(jīng)復(fù)制了序列化的foo.pt文件以及上面custom_class_project的源代碼樹。 我們將添加custom_class_project作為對此 C ++項目的依賴項,以便我們可以將自定義類構(gòu)建到二進(jìn)制文件中。

讓我們用以下內(nèi)容填充infer.cpp

#include <torch/script.h>


#include <iostream>
#include <memory>


int main(int argc, const char* argv[]) {
  torch::jit::script::Module module;
  try {
    // Deserialize the ScriptModule from a file using torch::jit::load().
    module = torch::jit::load("foo.pt");
  }
  catch (const c10::Error& e) {
    std::cerr << "error loading the model\n";
    return -1;
  }


  std::vector<c10::IValue> inputs = {"foobarbaz"};
  auto output = module.forward(inputs).toString();
  std::cout << output->string() << std::endl;
}

同樣,讓我們??定義我們的 CMakeLists.txt 文件:

cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(infer)


find_package(Torch REQUIRED)


add_subdirectory(custom_class_project)


## Define our library target
add_executable(infer infer.cpp)
set(CMAKE_CXX_STANDARD 14)
## Link against LibTorch
target_link_libraries(infer "${TORCH_LIBRARIES}")
## This is where we link in our libcustom_class code, making our
## custom class available in our binary.
target_link_libraries(infer -Wl,--no-as-needed custom_class)

您知道練習(xí):cd build,cmakemake

$ cd build
$ cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
  -- The C compiler identification is GNU 7.3.1
  -- The CXX compiler identification is GNU 7.3.1
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
  -- Detecting C compiler ABI info
  -- Detecting C compiler ABI info - done
  -- Detecting C compile features
  -- Detecting C compile features - done
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
  -- Detecting CXX compiler ABI info
  -- Detecting CXX compiler ABI info - done
  -- Detecting CXX compile features
  -- Detecting CXX compile features - done
  -- Looking for pthread.h
  -- Looking for pthread.h - found
  -- Looking for pthread_create
  -- Looking for pthread_create - not found
  -- Looking for pthread_create in pthreads
  -- Looking for pthread_create in pthreads - not found
  -- Looking for pthread_create in pthread
  -- Looking for pthread_create in pthread - found
  -- Found Threads: TRUE
  -- Found torch: /local/miniconda3/lib/python3.7/site-packages/torch/lib/libtorch.so
  -- Configuring done
  -- Generating done
  -- Build files have been written to: /cpp_inference_example/build
$ make -j
  Scanning dependencies of target custom_class
  [ 25%] Building CXX object custom_class_project/CMakeFiles/custom_class.dir/class.cpp.o
  [ 50%] Linking CXX shared library libcustom_class.so
  [ 50%] Built target custom_class
  Scanning dependencies of target infer
  [ 75%] Building CXX object CMakeFiles/infer.dir/infer.cpp.o
  [100%] Linking CXX executable infer
  [100%] Built target infer

現(xiàn)在我們可以運行令人興奮的 C ++二進(jìn)制文件:

$ ./infer
  momfoobarbaz

難以置信!

定義自定義 C ++類的序列化/反序列化方法

如果您嘗試將具有自定義綁定 C ++類的ScriptModule保存為屬性,則會出現(xiàn)以下錯誤:

# export_attr.py
import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
  def __init__(self):
      super().__init__()
      self.stack = torch.classes.Stack(["just", "testing"])


  def forward(self, s : str) -> str:
      return self.stack.pop() + s


scripted_foo = torch.jit.script(Foo())


scripted_foo.save('foo.pt')
$ python export_attr.py
RuntimeError: Cannot serialize custom bound C++ class __torch__.torch.classes.Stack. Please define serialization methods via torch::jit::pickle_ for this class. (pushIValueImpl at ../torch/csrc/jit/pickler.cpp:128)

這是因為 TorchScript 無法自動找出 C ++類中保存的信息。 您必須手動指定。 這樣做的方法是使用class_上的特殊def_pickle方法在類上定義__getstate____setstate__方法。

注意

TorchScript 中__getstate____setstate__的語義與 Python pickle 模塊的語義相同。 您可以閱讀更多有關(guān)如何使用這些方法的信息。

這是一個如何更新Stack類的注冊碼以包含序列化方法的示例:

static auto testStack =
  torch::jit::class_<Stack<std::string>>("Stack")
      .def(torch::jit::init<std::vector<std::string>>())
      .def("top", [](const c10::intrusive_ptr<Stack<std::string>>& self) {
        return self->stack_.back();
      })
      .def("push", &Stack<std::string>::push)
      .def("pop", &Stack<std::string>::pop)
      .def("clone", &Stack<std::string>::clone)
      .def("merge", &Stack<std::string>::merge)
      // class_<>::def_pickle allows you to define the serialization
      // and deserialization methods for your C++ class.
      // Currently, we only support passing stateless lambda functions
      // as arguments to def_pickle
      .def_pickle(
            // __getstate__
            // This function defines what data structure should be produced
            // when we serialize an instance of this class. The function
            // must take a single `self` argument, which is an intrusive_ptr
            // to the instance of the object. The function can return
            // any type that is supported as a return value of the TorchScript
            // custom operator API. In this instance, we've chosen to return
            // a std::vector<std::string> as the salient data to preserve
            // from the class.
            [](const c10::intrusive_ptr<Stack<std::string>>& self)
                -> std::vector<std::string> {
              return self->stack_;
            },
            // __setstate__
            // This function defines how to create a new instance of the C++
            // class when we are deserializing. The function must take a
            // single argument of the same type as the return value of
            // `__getstate__`. The function must return an intrusive_ptr
            // to a new instance of the C++ class, initialized however
            // you would like given the serialized state.
            [](std::vector<std::string> state)
                -> c10::intrusive_ptr<Stack<std::string>> {
              // A convenient way to instantiate an object and get an
              // intrusive_ptr to it is via `make_intrusive`. We use
              // that here to allocate an instance of Stack<std::string>
              // and call the single-argument std::vector<std::string>
              // constructor with the serialized state.
              return c10::make_intrusive<Stack<std::string>>(std::move(state));
            });

注意

我們采用與 pickle API 中的 pybind11 不同的方法。 pybind11 作為傳遞給class_::def()的特殊功能pybind11::pickle(),為此我們有一個單獨的方法def_pickle。 這是因為名稱torch::jit::pickle已經(jīng)被使用,我們不想引起混淆。

以這種方式定義(反)序列化行為后,腳本現(xiàn)在可以成功運行:

import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.stack = torch.classes.Stack(["just", "testing"])


    def forward(self, s : str) -> str:
        return self.stack.pop() + s


scripted_foo = torch.jit.script(Foo())


scripted_foo.save('foo.pt')
loaded = torch.jit.load('foo.pt')


print(loaded.stack.pop())
$ python ../export_attr.py
testing

結(jié)論

本教程向您介紹了如何向 TorchScript(以及擴展為 Python)公開 C ++類,如何注冊其方法,如何從 Python 和 TorchScript 使用該類以及如何使用該類保存和加載代碼以及運行該代碼。 在獨立的 C ++過程中。 現(xiàn)在,您可以使用與第三方 C ++庫接口的 C ++類擴展 TorchScript 模型,或?qū)崿F(xiàn)需要 Python,TorchScript 和 C ++之間的界線才能平滑融合的任何其他用例。

與往常一樣,如果您遇到任何問題或疑問,可以使用我們的論壇或 GitHub 問題進(jìn)行聯(lián)系。 另外,我們的常見問題解答(FAQ)頁面可能包含有用的信息。




以上內(nèi)容是否對您有幫助:
在線筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號
微信公眾號

編程獅公眾號