原文:https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
作者: Ghassen HAMROUNI
在本教程中,您將學(xué)習(xí)如何使用稱(chēng)為空間變換器網(wǎng)絡(luò)的視覺(jué)注意力機(jī)制來(lái)擴(kuò)充網(wǎng)絡(luò)。 您可以在 DeepMind 論文中詳細(xì)了解空間變壓器網(wǎng)絡(luò)。
空間變換器網(wǎng)絡(luò)是對(duì)任何空間變換的可區(qū)別關(guān)注的概括。 空間變換器網(wǎng)絡(luò)(簡(jiǎn)稱(chēng) STN)允許神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)如何對(duì)輸入圖像執(zhí)行空間變換,以增強(qiáng)模型的幾何不變性。 例如,它可以裁剪感興趣的區(qū)域,縮放并校正圖像的方向。 這可能是一個(gè)有用的機(jī)制,因?yàn)?CNN 不會(huì)對(duì)旋轉(zhuǎn)和縮放以及更一般的仿射變換保持不變。
關(guān)于 STN 的最好的事情之一就是能夠?qū)⑺?jiǎn)單地插入到任何現(xiàn)有的 CNN 中。
# License: BSD
## Author: Ghassen Hamrouni
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # interactive mode
在本文中,我們將嘗試使用經(jīng)典的 MNIST 數(shù)據(jù)集。 使用標(biāo)準(zhǔn)卷積網(wǎng)絡(luò)和空間變換器網(wǎng)絡(luò)。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## Training dataset
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
## Test dataset
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
得出:
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./MNIST/raw/train-images-idx3-ubyte.gz
Extracting ./MNIST/raw/train-images-idx3-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting ./MNIST/raw/t10k-images-idx3-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz to ./MNIST/raw
Processing...
Done!
空間變壓器網(wǎng)絡(luò)可歸結(jié)為三個(gè)主要組成部分:
注意:
我們需要包含 affine_grid
和 grid_sample
模塊的最新版本的 PyTorch。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform the usual forward pass
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
現(xiàn)在,讓我們使用 SGD 算法訓(xùn)練模型。 網(wǎng)絡(luò)正在以監(jiān)督方式學(xué)習(xí)分類(lèi)任務(wù)。 同時(shí),該模型以端到端的方式自動(dòng)學(xué)習(xí) STN。
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100\. * batch_idx / len(train_loader), loss.item()))
## ## A simple test procedure to measure STN the performances on MNIST.
##
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100\. * correct / len(test_loader.dataset)))
現(xiàn)在,我們將檢查學(xué)習(xí)到的視覺(jué)注意力機(jī)制的結(jié)果。
我們定義了一個(gè)小的輔助函數(shù),以便在訓(xùn)練時(shí)可視化轉(zhuǎn)換。
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
## We want to visualize the output of the spatial transformers layer
## after the training, we visualize a batch of input images and
## the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
## Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()
得出:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.312544
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.865688
Test set: Average loss: 0.2105, Accuracy: 9426/10000 (94%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.528199
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.273284
Test set: Average loss: 0.1150, Accuracy: 9661/10000 (97%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.312562
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.496166
Test set: Average loss: 0.1130, Accuracy: 9661/10000 (97%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.346181
Train Epoch: 4 [32000/60000 (53%)] Loss: 0.206084
Test set: Average loss: 0.0875, Accuracy: 9730/10000 (97%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.351175
Train Epoch: 5 [32000/60000 (53%)] Loss: 0.388225
Test set: Average loss: 0.0659, Accuracy: 9802/10000 (98%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.122667
Train Epoch: 6 [32000/60000 (53%)] Loss: 0.258372
Test set: Average loss: 0.0791, Accuracy: 9759/10000 (98%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.190197
Train Epoch: 7 [32000/60000 (53%)] Loss: 0.154468
Test set: Average loss: 0.0647, Accuracy: 9791/10000 (98%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.121149
Train Epoch: 8 [32000/60000 (53%)] Loss: 0.288490
Test set: Average loss: 0.0583, Accuracy: 9821/10000 (98%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.244609
Train Epoch: 9 [32000/60000 (53%)] Loss: 0.023396
Test set: Average loss: 0.0685, Accuracy: 9778/10000 (98%)
Train Epoch: 10 [0/60000 (0%)] Loss: 0.256878
Train Epoch: 10 [32000/60000 (53%)] Loss: 0.091626
Test set: Average loss: 0.0684, Accuracy: 9783/10000 (98%)
Train Epoch: 11 [0/60000 (0%)] Loss: 0.181910
Train Epoch: 11 [32000/60000 (53%)] Loss: 0.113193
Test set: Average loss: 0.0492, Accuracy: 9856/10000 (99%)
Train Epoch: 12 [0/60000 (0%)] Loss: 0.081072
Train Epoch: 12 [32000/60000 (53%)] Loss: 0.082513
Test set: Average loss: 0.0670, Accuracy: 9800/10000 (98%)
Train Epoch: 13 [0/60000 (0%)] Loss: 0.180748
Train Epoch: 13 [32000/60000 (53%)] Loss: 0.194512
Test set: Average loss: 0.0439, Accuracy: 9874/10000 (99%)
Train Epoch: 14 [0/60000 (0%)] Loss: 0.099560
Train Epoch: 14 [32000/60000 (53%)] Loss: 0.084377
Test set: Average loss: 0.0416, Accuracy: 9880/10000 (99%)
Train Epoch: 15 [0/60000 (0%)] Loss: 0.070021
Train Epoch: 15 [32000/60000 (53%)] Loss: 0.241336
Test set: Average loss: 0.0588, Accuracy: 9820/10000 (98%)
Train Epoch: 16 [0/60000 (0%)] Loss: 0.060536
Train Epoch: 16 [32000/60000 (53%)] Loss: 0.053016
Test set: Average loss: 0.0405, Accuracy: 9877/10000 (99%)
Train Epoch: 17 [0/60000 (0%)] Loss: 0.207369
Train Epoch: 17 [32000/60000 (53%)] Loss: 0.069607
Test set: Average loss: 0.1006, Accuracy: 9685/10000 (97%)
Train Epoch: 18 [0/60000 (0%)] Loss: 0.127503
Train Epoch: 18 [32000/60000 (53%)] Loss: 0.070724
Test set: Average loss: 0.0659, Accuracy: 9814/10000 (98%)
Train Epoch: 19 [0/60000 (0%)] Loss: 0.176861
Train Epoch: 19 [32000/60000 (53%)] Loss: 0.116980
Test set: Average loss: 0.0413, Accuracy: 9871/10000 (99%)
Train Epoch: 20 [0/60000 (0%)] Loss: 0.146933
Train Epoch: 20 [32000/60000 (53%)] Loss: 0.245741
Test set: Average loss: 0.0346, Accuracy: 9892/10000 (99%)
腳本的總運(yùn)行時(shí)間:(2 分鐘 3.339 秒)
Download Python source code: spatial_transformer_tutorial.py
Download Jupyter notebook: spatial_transformer_tutorial.ipynb
由獅身人面像畫(huà)廊生成的畫(huà)廊
更多建議: