PyTorch 空間變壓器網(wǎng)絡(luò)教程

2020-09-07 17:25 更新
原文:https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html

作者: Ghassen HAMROUNI

../_images/FSeq.png

在本教程中,您將學(xué)習(xí)如何使用稱(chēng)為空間變換器網(wǎng)絡(luò)的視覺(jué)注意力機(jī)制來(lái)擴(kuò)充網(wǎng)絡(luò)。 您可以在 DeepMind 論文中詳細(xì)了解空間變壓器網(wǎng)絡(luò)。

空間變換器網(wǎng)絡(luò)是對(duì)任何空間變換的可區(qū)別關(guān)注的概括。 空間變換器網(wǎng)絡(luò)(簡(jiǎn)稱(chēng) STN)允許神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)如何對(duì)輸入圖像執(zhí)行空間變換,以增強(qiáng)模型的幾何不變性。 例如,它可以裁剪感興趣的區(qū)域,縮放并校正圖像的方向。 這可能是一個(gè)有用的機(jī)制,因?yàn)?CNN 不會(huì)對(duì)旋轉(zhuǎn)和縮放以及更一般的仿射變換保持不變。

關(guān)于 STN 的最好的事情之一就是能夠?qū)⑺?jiǎn)單地插入到任何現(xiàn)有的 CNN 中。

  1. # License: BSD
  2. ## Author: Ghassen Hamrouni
  3. from __future__ import print_function
  4. import torch
  5. import torch.nn as nn
  6. import torch.nn.functional as F
  7. import torch.optim as optim
  8. import torchvision
  9. from torchvision import datasets, transforms
  10. import matplotlib.pyplot as plt
  11. import numpy as np
  12. plt.ion() # interactive mode

加載數(shù)據(jù)

在本文中,我們將嘗試使用經(jīng)典的 MNIST 數(shù)據(jù)集。 使用標(biāo)準(zhǔn)卷積網(wǎng)絡(luò)和空間變換器網(wǎng)絡(luò)。

  1. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  2. ## Training dataset
  3. train_loader = torch.utils.data.DataLoader(
  4. datasets.MNIST(root='.', train=True, download=True,
  5. transform=transforms.Compose([
  6. transforms.ToTensor(),
  7. transforms.Normalize((0.1307,), (0.3081,))
  8. ])), batch_size=64, shuffle=True, num_workers=4)
  9. ## Test dataset
  10. test_loader = torch.utils.data.DataLoader(
  11. datasets.MNIST(root='.', train=False, transform=transforms.Compose([
  12. transforms.ToTensor(),
  13. transforms.Normalize((0.1307,), (0.3081,))
  14. ])), batch_size=64, shuffle=True, num_workers=4)

得出:

  1. Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./MNIST/raw/train-images-idx3-ubyte.gz
  2. Extracting ./MNIST/raw/train-images-idx3-ubyte.gz to ./MNIST/raw
  3. Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz
  4. Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz to ./MNIST/raw
  5. Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./MNIST/raw/t10k-images-idx3-ubyte.gz
  6. Extracting ./MNIST/raw/t10k-images-idx3-ubyte.gz to ./MNIST/raw
  7. Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz
  8. Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz to ./MNIST/raw
  9. Processing...
  10. Done!

描述空間變壓器網(wǎng)絡(luò)

空間變壓器網(wǎng)絡(luò)可歸結(jié)為三個(gè)主要組成部分:

  • 本地化網(wǎng)絡(luò)是常規(guī)的 CNN,可以對(duì)轉(zhuǎn)換參數(shù)進(jìn)行回歸。 永遠(yuǎn)不會(huì)從此數(shù)據(jù)集中顯式學(xué)習(xí)變換,而是網(wǎng)絡(luò)會(huì)自動(dòng)學(xué)習(xí)增強(qiáng)全局精度的空間變換。
  • 網(wǎng)格生成器在輸入圖像中生成與來(lái)自輸出圖像的每個(gè)像素相對(duì)應(yīng)的坐標(biāo)網(wǎng)格。
  • 采樣器使用轉(zhuǎn)換的參數(shù),并將其應(yīng)用于輸入圖像。

../_images/stn-arch.png

注意:

我們需要包含 affine_grid grid_sample 模塊的最新版本的 PyTorch。

  1. class Net(nn.Module):
  2. def __init__(self):
  3. super(Net, self).__init__()
  4. self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
  5. self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
  6. self.conv2_drop = nn.Dropout2d()
  7. self.fc1 = nn.Linear(320, 50)
  8. self.fc2 = nn.Linear(50, 10)
  9. # Spatial transformer localization-network
  10. self.localization = nn.Sequential(
  11. nn.Conv2d(1, 8, kernel_size=7),
  12. nn.MaxPool2d(2, stride=2),
  13. nn.ReLU(True),
  14. nn.Conv2d(8, 10, kernel_size=5),
  15. nn.MaxPool2d(2, stride=2),
  16. nn.ReLU(True)
  17. )
  18. # Regressor for the 3 * 2 affine matrix
  19. self.fc_loc = nn.Sequential(
  20. nn.Linear(10 * 3 * 3, 32),
  21. nn.ReLU(True),
  22. nn.Linear(32, 3 * 2)
  23. )
  24. # Initialize the weights/bias with identity transformation
  25. self.fc_loc[2].weight.data.zero_()
  26. self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
  27. # Spatial transformer network forward function
  28. def stn(self, x):
  29. xs = self.localization(x)
  30. xs = xs.view(-1, 10 * 3 * 3)
  31. theta = self.fc_loc(xs)
  32. theta = theta.view(-1, 2, 3)
  33. grid = F.affine_grid(theta, x.size())
  34. x = F.grid_sample(x, grid)
  35. return x
  36. def forward(self, x):
  37. # transform the input
  38. x = self.stn(x)
  39. # Perform the usual forward pass
  40. x = F.relu(F.max_pool2d(self.conv1(x), 2))
  41. x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
  42. x = x.view(-1, 320)
  43. x = F.relu(self.fc1(x))
  44. x = F.dropout(x, training=self.training)
  45. x = self.fc2(x)
  46. return F.log_softmax(x, dim=1)
  47. model = Net().to(device)

訓(xùn)練模型

現(xiàn)在,讓我們使用 SGD 算法訓(xùn)練模型。 網(wǎng)絡(luò)正在以監(jiān)督方式學(xué)習(xí)分類(lèi)任務(wù)。 同時(shí),該模型以端到端的方式自動(dòng)學(xué)習(xí) STN。

  1. optimizer = optim.SGD(model.parameters(), lr=0.01)
  2. def train(epoch):
  3. model.train()
  4. for batch_idx, (data, target) in enumerate(train_loader):
  5. data, target = data.to(device), target.to(device)
  6. optimizer.zero_grad()
  7. output = model(data)
  8. loss = F.nll_loss(output, target)
  9. loss.backward()
  10. optimizer.step()
  11. if batch_idx % 500 == 0:
  12. print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
  13. epoch, batch_idx * len(data), len(train_loader.dataset),
  14. 100\. * batch_idx / len(train_loader), loss.item()))
  15. ## ## A simple test procedure to measure STN the performances on MNIST.
  16. ##
  17. def test():
  18. with torch.no_grad():
  19. model.eval()
  20. test_loss = 0
  21. correct = 0
  22. for data, target in test_loader:
  23. data, target = data.to(device), target.to(device)
  24. output = model(data)
  25. # sum up batch loss
  26. test_loss += F.nll_loss(output, target, size_average=False).item()
  27. # get the index of the max log-probability
  28. pred = output.max(1, keepdim=True)[1]
  29. correct += pred.eq(target.view_as(pred)).sum().item()
  30. test_loss /= len(test_loader.dataset)
  31. print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
  32. .format(test_loss, correct, len(test_loader.dataset),
  33. 100\. * correct / len(test_loader.dataset)))

可視化 STN 結(jié)果

現(xiàn)在,我們將檢查學(xué)習(xí)到的視覺(jué)注意力機(jī)制的結(jié)果。

我們定義了一個(gè)小的輔助函數(shù),以便在訓(xùn)練時(shí)可視化轉(zhuǎn)換。

  1. def convert_image_np(inp):
  2. """Convert a Tensor to numpy image."""
  3. inp = inp.numpy().transpose((1, 2, 0))
  4. mean = np.array([0.485, 0.456, 0.406])
  5. std = np.array([0.229, 0.224, 0.225])
  6. inp = std * inp + mean
  7. inp = np.clip(inp, 0, 1)
  8. return inp
  9. ## We want to visualize the output of the spatial transformers layer
  10. ## after the training, we visualize a batch of input images and
  11. ## the corresponding transformed batch using STN.
  12. def visualize_stn():
  13. with torch.no_grad():
  14. # Get a batch of training data
  15. data = next(iter(test_loader))[0].to(device)
  16. input_tensor = data.cpu()
  17. transformed_input_tensor = model.stn(data).cpu()
  18. in_grid = convert_image_np(
  19. torchvision.utils.make_grid(input_tensor))
  20. out_grid = convert_image_np(
  21. torchvision.utils.make_grid(transformed_input_tensor))
  22. # Plot the results side-by-side
  23. f, axarr = plt.subplots(1, 2)
  24. axarr[0].imshow(in_grid)
  25. axarr[0].set_title('Dataset Images')
  26. axarr[1].imshow(out_grid)
  27. axarr[1].set_title('Transformed Images')
  28. for epoch in range(1, 20 + 1):
  29. train(epoch)
  30. test()
  31. ## Visualize the STN transformation on some input batch
  32. visualize_stn()
  33. plt.ioff()
  34. plt.show()

../_images/sphx_glr_spatial_transformer_tutorial_001.png

得出:

  1. Train Epoch: 1 [0/60000 (0%)] Loss: 2.312544
  2. Train Epoch: 1 [32000/60000 (53%)] Loss: 0.865688
  3. Test set: Average loss: 0.2105, Accuracy: 9426/10000 (94%)
  4. Train Epoch: 2 [0/60000 (0%)] Loss: 0.528199
  5. Train Epoch: 2 [32000/60000 (53%)] Loss: 0.273284
  6. Test set: Average loss: 0.1150, Accuracy: 9661/10000 (97%)
  7. Train Epoch: 3 [0/60000 (0%)] Loss: 0.312562
  8. Train Epoch: 3 [32000/60000 (53%)] Loss: 0.496166
  9. Test set: Average loss: 0.1130, Accuracy: 9661/10000 (97%)
  10. Train Epoch: 4 [0/60000 (0%)] Loss: 0.346181
  11. Train Epoch: 4 [32000/60000 (53%)] Loss: 0.206084
  12. Test set: Average loss: 0.0875, Accuracy: 9730/10000 (97%)
  13. Train Epoch: 5 [0/60000 (0%)] Loss: 0.351175
  14. Train Epoch: 5 [32000/60000 (53%)] Loss: 0.388225
  15. Test set: Average loss: 0.0659, Accuracy: 9802/10000 (98%)
  16. Train Epoch: 6 [0/60000 (0%)] Loss: 0.122667
  17. Train Epoch: 6 [32000/60000 (53%)] Loss: 0.258372
  18. Test set: Average loss: 0.0791, Accuracy: 9759/10000 (98%)
  19. Train Epoch: 7 [0/60000 (0%)] Loss: 0.190197
  20. Train Epoch: 7 [32000/60000 (53%)] Loss: 0.154468
  21. Test set: Average loss: 0.0647, Accuracy: 9791/10000 (98%)
  22. Train Epoch: 8 [0/60000 (0%)] Loss: 0.121149
  23. Train Epoch: 8 [32000/60000 (53%)] Loss: 0.288490
  24. Test set: Average loss: 0.0583, Accuracy: 9821/10000 (98%)
  25. Train Epoch: 9 [0/60000 (0%)] Loss: 0.244609
  26. Train Epoch: 9 [32000/60000 (53%)] Loss: 0.023396
  27. Test set: Average loss: 0.0685, Accuracy: 9778/10000 (98%)
  28. Train Epoch: 10 [0/60000 (0%)] Loss: 0.256878
  29. Train Epoch: 10 [32000/60000 (53%)] Loss: 0.091626
  30. Test set: Average loss: 0.0684, Accuracy: 9783/10000 (98%)
  31. Train Epoch: 11 [0/60000 (0%)] Loss: 0.181910
  32. Train Epoch: 11 [32000/60000 (53%)] Loss: 0.113193
  33. Test set: Average loss: 0.0492, Accuracy: 9856/10000 (99%)
  34. Train Epoch: 12 [0/60000 (0%)] Loss: 0.081072
  35. Train Epoch: 12 [32000/60000 (53%)] Loss: 0.082513
  36. Test set: Average loss: 0.0670, Accuracy: 9800/10000 (98%)
  37. Train Epoch: 13 [0/60000 (0%)] Loss: 0.180748
  38. Train Epoch: 13 [32000/60000 (53%)] Loss: 0.194512
  39. Test set: Average loss: 0.0439, Accuracy: 9874/10000 (99%)
  40. Train Epoch: 14 [0/60000 (0%)] Loss: 0.099560
  41. Train Epoch: 14 [32000/60000 (53%)] Loss: 0.084377
  42. Test set: Average loss: 0.0416, Accuracy: 9880/10000 (99%)
  43. Train Epoch: 15 [0/60000 (0%)] Loss: 0.070021
  44. Train Epoch: 15 [32000/60000 (53%)] Loss: 0.241336
  45. Test set: Average loss: 0.0588, Accuracy: 9820/10000 (98%)
  46. Train Epoch: 16 [0/60000 (0%)] Loss: 0.060536
  47. Train Epoch: 16 [32000/60000 (53%)] Loss: 0.053016
  48. Test set: Average loss: 0.0405, Accuracy: 9877/10000 (99%)
  49. Train Epoch: 17 [0/60000 (0%)] Loss: 0.207369
  50. Train Epoch: 17 [32000/60000 (53%)] Loss: 0.069607
  51. Test set: Average loss: 0.1006, Accuracy: 9685/10000 (97%)
  52. Train Epoch: 18 [0/60000 (0%)] Loss: 0.127503
  53. Train Epoch: 18 [32000/60000 (53%)] Loss: 0.070724
  54. Test set: Average loss: 0.0659, Accuracy: 9814/10000 (98%)
  55. Train Epoch: 19 [0/60000 (0%)] Loss: 0.176861
  56. Train Epoch: 19 [32000/60000 (53%)] Loss: 0.116980
  57. Test set: Average loss: 0.0413, Accuracy: 9871/10000 (99%)
  58. Train Epoch: 20 [0/60000 (0%)] Loss: 0.146933
  59. Train Epoch: 20 [32000/60000 (53%)] Loss: 0.245741
  60. Test set: Average loss: 0.0346, Accuracy: 9892/10000 (99%)

腳本的總運(yùn)行時(shí)間:(2 分鐘 3.339 秒)

Download Python source code: spatial_transformer_tutorial.py Download Jupyter notebook: spatial_transformer_tutorial.ipynb

由獅身人面像畫(huà)廊生成的畫(huà)廊


以上內(nèi)容是否對(duì)您有幫助:
在線(xiàn)筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號(hào)
微信公眾號(hào)

編程獅公眾號(hào)