W3Cschool
恭喜您成為首批注冊用戶
獲得88經(jīng)驗值獎勵
Go語言中的?goroutine
?雖然相對于系統(tǒng)線程來說比較輕量級(初始棧大小僅2KB),(并且支持動態(tài)擴容),而正常采用java,c++等語言啟用的線程一般都是內(nèi)核態(tài)的占用的內(nèi)存資源一般在4m左右,而假設(shè)我們的服務(wù)器CPU內(nèi)存為4G,那么很明顯才用的內(nèi)核態(tài)線程的并發(fā)總數(shù)量也就是1024個,相反查看一下Go語言的協(xié)程則可以達到4*1024*1024/2=200w.這么一看就明白了為什么Go語言天生支持高并發(fā)。但是在高并發(fā)量下的?goroutine
?頻繁創(chuàng)建和銷毀對于性能損耗以及GC來說壓力也不小。充分將?goroutine
?復(fù)用,減少?goroutine
?的創(chuàng)建/銷毀的性能損耗,這便是?grpool
?對?goroutine
?進行池化封裝的目的。例如,針對于100W個執(zhí)行任務(wù),使用?goroutine
?的話需要不停創(chuàng)建并銷毀100W個?goroutine
?,而使用?grpool
?也許底層只需要幾萬個?goroutine
?便能充分復(fù)用地執(zhí)行完成所有任務(wù)。
經(jīng)測試,?goroutine
?池對于業(yè)務(wù)邏輯的執(zhí)行效率(降低執(zhí)行時間/CPU使用率)提升不大,甚至沒有原生的?goroutine
?執(zhí)行快速(池化?goroutine
?執(zhí)行調(diào)度并沒有底層go調(diào)度器高效,因為池化?goroutine
?的執(zhí)行調(diào)度也是基于底層go調(diào)度器),但是由于采用了復(fù)用的設(shè)計,池化后對內(nèi)存的使用率得到極大的降低。在v2版本中?grpool
?也加入了貫穿全局的鏈路追蹤。
概念:
Pool
?:?goroutine
?池,用于管理若干可復(fù)用的?goroutine
?協(xié)程資源;
Worker
?:池對象中參與任務(wù)執(zhí)行的?goroutine
?,一個?Worker
?可以執(zhí)行若干個?Job
?,直到隊列中再無等待的?Job
?;
Job
?:添加到池對象的任務(wù)隊列中等待執(zhí)行的任務(wù),是一個?func()
?的方法,一個?Job
?同時只能被一個?Worker
?獲取并執(zhí)行;使用方式:
import "github.com/gogf/gf/v2/os/grpool"
使用場景:管理大量異步任務(wù)的場景、需要異步協(xié)程復(fù)用的場景、需要降低內(nèi)存使用率的場景。
接口文檔:
func Add(f func()) error
func Jobs() int
func Size() int
type Pool
func New(limit ...int) *Pool
func (p *Pool) Add(ctx context.Context, f Func) error
func (p *Pool) AddWithRecover(ctx context.Context, userFunc Func, recoverFunc ...func(err error)) error
func (p *Pool) Cap() int
func (p *Pool) Close()
func (p *Pool) IsClosed() bool
func (p *Pool) Jobs() int
func (p *Pool) Size() int
通過?grpool.New
?方法創(chuàng)建一個?goroutine
?池對象,參數(shù)?limit
?為非必需參數(shù),用于限定池中的工作?goroutine
?數(shù)量,默認為不限制。需要注意的是,任務(wù)可以不停地往池中添加,沒有限制,但是工作的?goroutine
?是可以做限制的。我們可以通過?Size()
?方法查詢當(dāng)前的工作?goroutine
?數(shù)量,使用?Jobs()
?方法查詢當(dāng)前池中待處理的任務(wù)數(shù)量。
同時,為便于使用,?grpool
?包提供了默認的?goroutine
?池,默認的池對象不限制?goroutine
?數(shù)量,直接通過?grpool.Add
?即可往默認的池中添加任務(wù),任務(wù)參數(shù)必須是一個 ?func()
?類型的函數(shù)/方法。
package main
import (
"context"
"fmt"
"github.com/gogf/gf/v2/os/gctx"
"github.com/gogf/gf/v2/os/grpool"
"github.com/gogf/gf/v2/os/gtimer"
"time"
)
var (
ctx = gctx.New()
)
func job(ctx context.Context) {
time.Sleep(1*time.Second)
}
func main() {
pool := grpool.New(100)
for i := 0; i < 1000; i++ {
pool.Add(ctx,job)
}
fmt.Println("worker:", pool.Size())
fmt.Println(" jobs:", pool.Jobs())
gtimer.SetInterval(ctx,time.Second, func(ctx context.Context) {
fmt.Println("worker:", pool.Size())
fmt.Println(" jobs:", pool.Jobs())
fmt.Println()
})
select {}
}
這段程序中的任務(wù)函數(shù)的功能是?sleep
? 1秒鐘,這樣便能充分展示出?goroutine
?數(shù)量限制功能。其中,我們使用了?gtime.SetInterval
?定時器每隔1秒鐘打印出當(dāng)前默認池中的工作?goroutine
?數(shù)量以及待處理的任務(wù)數(shù)量。
package main
import (
"context"
"fmt"
"github.com/gogf/gf/v2/os/gctx"
"github.com/gogf/gf/v2/os/grpool"
"sync"
)
var (
ctx = gctx.New()
)
func main() {
wg := sync.WaitGroup{}
for i := 0; i < 10; i++ {
wg.Add(1)
grpool.Add(ctx,func(ctx context.Context) {
fmt.Println(i)
wg.Done()
})
}
wg.Wait()
}
我們這段代碼的目的是要順序地打印出0-9,然而運行后卻輸出:
10
10
10
10
10
10
10
10
10
10
為什么呢?這里的執(zhí)行結(jié)果無論是采用go關(guān)鍵字來執(zhí)行還是?grpool
?來執(zhí)行都是如此。原因是,對于異步線程/協(xié)程來講,函數(shù)進行異步執(zhí)行注冊時,該函數(shù)并未真正開始執(zhí)行(注冊時只在?goroutine
?的棧中保存了變量?i
?的內(nèi)存地址),而一旦開始執(zhí)行時函數(shù)才會去讀取變量?i
?的值,而這個時候變量?i
?的值已經(jīng)自增到了10。 清楚原因之后,改進方案也很簡單了,就是在注冊異步執(zhí)行函數(shù)的時候,把當(dāng)時變量i的值也一并傳遞獲?。换蛘甙旬?dāng)前變量i的值賦值給一個不會改變的臨時變量,在函數(shù)中使用該臨時變量而不是直接使用變量?i
?。
改進后的示例代碼如下:
package main
import (
"fmt"
"sync"
)
func main() {
wg := sync.WaitGroup{}
for i := 0; i < 10; i++ {
wg.Add(1)
go func(v int){
fmt.Println(v)
wg.Done()
}(i)
}
wg.Wait()
}
執(zhí)行后,輸出結(jié)果為:
0
9
3
4
5
6
7
8
1
2
注意,異步執(zhí)行時并不會保證按照函數(shù)注冊時的順序執(zhí)行,以下同理。
package main
import (
"context"
"fmt"
"github.com/gogf/gf/v2/os/gctx"
"github.com/gogf/gf/v2/os/grpool"
"sync"
)
var (
ctx = gctx.New()
)
func main() {
wg := sync.WaitGroup{}
for i := 0; i < 10; i++ {
wg.Add(1)
v := i
grpool.Add(ctx, func(ctx context.Context) {
fmt.Println(v)
wg.Done()
})
}
wg.Wait()
}
執(zhí)行后,輸出結(jié)果為:
9
0
1
2
3
4
5
6
7
8
這里可以看到,使用?grpool
?進行任務(wù)注冊時,注冊方法為?func(ctx context.Context)
?,因此無法在任務(wù)注冊時把變量?i
?的值注冊進去(請盡量不要通過?ctx
?傳遞業(yè)務(wù)參數(shù)),因此只能采用臨時變量的形式來傳遞當(dāng)前變量?i
?的值。
?AddWithRecover
?將新作業(yè)推送到具有指定恢復(fù)功能的池中。當(dāng)?userFunc
?執(zhí)行過程中出現(xiàn)?panic
?時,會調(diào)用可選的?Recovery Func
?。如果沒有傳入?Recovery Func
?或賦空,則忽略?userFunc
?引發(fā)的?panic
?。該作業(yè)將異步執(zhí)行。
package main
import (
"context"
"fmt"
"github.com/gogf/gf/v2/container/garray"
"github.com/gogf/gf/v2/os/gctx"
"github.com/gogf/gf/v2/os/grpool"
"time"
)
var (
ctx = gctx.New()
)
func main() {
array := garray.NewArray(true)
grpool.AddWithRecover(ctx, func(ctx context.Context) {
array.Append(1)
array.Append(2)
panic(1)
}, func(err error) {
array.Append(1)
})
grpool.AddWithRecover(ctx, func(ctx context.Context) {
panic(1)
array.Append(1)
})
time.Sleep(500 * time.Millisecond)
fmt.Print(array.Len())
}
package main
import (
"context"
"fmt"
"github.com/gogf/gf/v2/os/gctx"
"github.com/gogf/gf/v2/os/grpool"
"github.com/gogf/gf/v2/os/gtime"
"sync"
"time"
)
var (
ctx = gctx.New()
)
func main() {
start := gtime.TimestampMilli()
wg := sync.WaitGroup{}
for i := 0; i < 10000000; i++ {
wg.Add(1)
grpool.Add(ctx,func(ctx context.Context) {
time.Sleep(time.Millisecond)
wg.Done()
})
}
wg.Wait()
fmt.Println(grpool.Size())
fmt.Println("time spent:", gtime.TimestampMilli() - start)
}
package main
import (
"fmt"
"github.com/gogf/gf/v2/os/gtime"
"sync"
"time"
)
func main() {
start := gtime.TimestampMilli()
wg := sync.WaitGroup{}
for i := 0; i < 10000000; i++ {
wg.Add(1)
go func() {
time.Sleep(time.Millisecond)
wg.Done()
}()
}
wg.Wait()
fmt.Println("time spent:", gtime.TimestampMilli() - start)
}
測試結(jié)果為兩個程序各運行3次取平均值。
grpool:
goroutine count: 847313
memory spent: ~2.1 G
time spent: 37792 ms
goroutine:
goroutine count: 1000W
memory spent: ~4.8 GB
time spent: 27085 ms
可以看到池化過后,執(zhí)行相同數(shù)量的任務(wù),?goroutine
?數(shù)量減少很多,相對的內(nèi)存也降低了一倍以上,CPU時間耗時也勉強可以接受。
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: