GROUP 運算符用于在一個或多個關(guān)系中對數(shù)據(jù)進行分組,它收集具有相同key的數(shù)據(jù)。
下面給出了 group 運算符的語法。
grunt> Group_data = GROUP Relation_name BY age;
假設(shè)在HDFS目錄 /pig_data/ 中有一個名為 student_details.txt 的文件,如下所示。
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad 002,siddarth,Battacharya,22,9848022338,Kolkata 003,Rajesh,Khanna,22,9848022339,Delhi 004,Preethi,Agarwal,21,9848022330,Pune 005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar 006,Archana,Mishra,23,9848022335,Chennai 007,Komal,Nayak,24,9848022334,trivendram 008,Bharathi,Nambiayar,24,9848022333,Chennai
將這個文件加載到Apache Pig中,關(guān)系名稱為student_details,如下所示。
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',') as (id:int, firstname:chararray, lastname:chararray, age:int, phone:chararray, city:chararray);
現(xiàn)在,讓我們按照年齡關(guān)系中的記錄/元組進行分組,如下所示。
grunt> group_data = GROUP student_details by age;
使用 DUMP 運算符驗證關(guān)系 group_data ,如下所示。
grunt> Dump group_data;
將獲得顯示名為group_data關(guān)系的內(nèi)容的輸出,如下所示。在這里你可以觀察到結(jié)果模式有兩列:
一個是age,通過它我們將關(guān)系分組。
另一個是bag,其中包含一組元組,有各自年齡的學(xué)生記錄。
(21,{(4,Preethi,Agarwal,21,9848022330,Pune),(1,Rajiv,Reddy,21,9848022337,Hydera bad)}) (22,{(3,Rajesh,Khanna,22,9848022339,Delhi),(2,siddarth,Battacharya,22,984802233 8,Kolkata)}) (23,{(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336 ,Bhuwaneshwar)}) (24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334, trivendram)})
在使用 describe 命令分組數(shù)據(jù)后,可以看到表的模式,如下所示。
grunt> Describe group_data; group_data: {group: int,student_details: {(id: int,firstname: chararray, lastname: chararray,age: int,phone: chararray,city: chararray)}}
以同樣的方式,可以使用illustrate命令獲取模式的示例說明,如下所示。
$ Illustrate group_data;
它將產(chǎn)生以下輸出
------------------------------------------------------------------------------------------------- |group_data| group:int | student_details:bag{:tuple(id:int,firstname:chararray,lastname:chararray,age:int,phone:chararray,city:chararray)}| ------------------------------------------------------------------------------------------------- | | 21 | { 4, Preethi, Agarwal, 21, 9848022330, Pune), (1, Rajiv, Reddy, 21, 9848022337, Hyderabad)}| | | 2 | {(2,siddarth,Battacharya,22,9848022338,Kolkata),(003,Rajesh,Khanna,22,9848022339,Delhi)}| -------------------------------------------------------------------------------------------------
讓我們按年齡和城市對關(guān)系進行分組,如下所示。
grunt> group_multiple = GROUP student_details by (age, city);
可以使用Dump運算符驗證名為 group_multiple 的關(guān)系的內(nèi)容,如下所示。
grunt> Dump group_multiple; ((21,Pune),{(4,Preethi,Agarwal,21,9848022330,Pune)}) ((21,Hyderabad),{(1,Rajiv,Reddy,21,9848022337,Hyderabad)}) ((22,Delhi),{(3,Rajesh,Khanna,22,9848022339,Delhi)}) ((22,Kolkata),{(2,siddarth,Battacharya,22,9848022338,Kolkata)}) ((23,Chennai),{(6,Archana,Mishra,23,9848022335,Chennai)}) ((23,Bhuwaneshwar),{(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)}) ((24,Chennai),{(8,Bharathi,Nambiayar,24,9848022333,Chennai)}) (24,trivendram),{(7,Komal,Nayak,24,9848022334,trivendram)})
你可以按所有的列對關(guān)系進行分組,如下所示。
grunt> group_all = GROUP student_details All;
現(xiàn)在,請驗證關(guān)系 group_all 的內(nèi)容,如下所示。
grunt> Dump group_all; (all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334 ,trivendram), (6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336,Bhuw aneshwar), (4,Preethi,Agarwal,21,9848022330,Pune),(3,Rajesh,Khanna,22,9848022339,Delhi), (2,siddarth,Battacharya,22,9848022338,Kolkata),(1,Rajiv,Reddy,21,9848022337,Hyd erabad)})
更多建議: