在使用pytorch訓練網(wǎng)絡的過程中,有時候會出現(xiàn)loss變?yōu)?的情況,當出現(xiàn)這樣的情況的時候,我們要怎么解決呢?今天小編帶來了出現(xiàn)這種情況的解決方案,快來看一下吧。
問題
// loss 突然變成0 python train.py -b=8 INFO: Using device cpu INFO: Network: 1 input channels 7 output channels (classes) Bilinear upscaling INFO: Creating dataset with 868 examples INFO: Starting training: Epochs: 5 Batch size: 8 Learning rate: 0.001 Training size: 782 Validation size: 86 Checkpoints: True Device: cpu Images scaling: 1 Epoch 1/5: 10%|██████████████▏ | 80/782 [01:33<13:21, 1.14s/img, loss (batch)=0.886I NFO: Validation cross entropy: 1.86862473487854 Epoch 1/5: 20%|███████████████████████████▊ | 160/782 [03:34<11:51, 1.14s/img, loss (batch)=2.35e-7I NFO: Validation cross entropy: 5.887489884504049e-10 Epoch 1/5: 31%|███████████████████████████████████████████▌ | 240/782 [05:41<11:29, 1.27s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 41%|██████████████████████████████████████████████████████████ | 320/782 [07:49<09:16, 1.20s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 51%|████████████████████████████████████████████████████████████████████████▋ | 400/782 [09:55<07:31, 1.18s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 61%|███████████████████████████████████████████████████████████████████████████████████████▏ | 480/782 [12:02<05:58, 1.19s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 72%|█████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 560/782 [14:04<04:16, 1.15s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 82%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 640/782 [16:11<02:49, 1.20s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 92%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 720/782 [18:21<01:18, 1.26s/img, loss (batch)=0I NFO: Validation cross entropy: 0.0 Epoch 1/5: 94%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 736/782 [19:17<01:12, 1.57s/img, loss (batch)=0] Traceback (most recent call last): File "train.py", line 182, in <module> val_percent=args.val / 100) File "train.py", line 66, in train_net for batch in train_loader: File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 819, in __next__ return self._process_data(data) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 846, in _process_data data.reraise() File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/_utils.py", line 385, in reraise raise self.exc_type(msg) RuntimeError: Caught RuntimeError in DataLoader worker process 4. Original Traceback (most recent call last): File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop data = fetcher.fetch(index) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch return self.collate_fn(data) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py", line 74, in default_collate return {key: default_collate([d[key] for d in batch]) for key in elem} File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py", line 74, in <dictcomp> return {key: default_collate([d[key] for d in batch]) for key in elem} File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate return torch.stack(batch, 0, out=out) RuntimeError: Expected object of scalar type Double but got scalar type Byte for sequence element 4 in sequence argument at position #1 'tensors'
交叉熵損失函數(shù)是衡量輸出與標簽之間的損失,通過求導確定梯度下降的方向。
loss突然變?yōu)?,有兩種可能性。
一是因為預測輸出為0,二是因為標簽為0。
如果是因為標簽為0,那么一開始loss就可能為0.
檢查參數(shù)初始化
檢查前向傳播的網(wǎng)絡
檢查loss的計算格式
檢查梯度下降
是否出現(xiàn)梯度消失。
實際上是標簽出了錯誤
補充:pytorch訓練出現(xiàn)loss=na
遇到一個很坑的情況,在pytorch訓練過程中出現(xiàn)loss=nan的情況
有以下幾種可能:
1.學習率太高。
2.loss函數(shù)有問題
3.對于回歸問題,可能出現(xiàn)了除0 的計算,加一個很小的余項可能可以解決
4.數(shù)據(jù)本身,是否存在Nan、inf,可以用np.isnan(),np.isinf()檢查一下input和target
5.target本身應該是能夠被loss函數(shù)計算的,比如sigmoid激活函數(shù)的target應該大于0,同樣的需要檢查數(shù)據(jù)集
以上就是Pytorch在訓練網(wǎng)絡過程中l(wèi)oss變?yōu)?的解決方案,希望能給大家一個參考,也希望大家多多支持W3Cschool。如有錯誤或未考慮完全的地方,望不吝賜教。