本文將介紹一種使用C語(yǔ)言實(shí)現(xiàn)矩陣乘法的高效方法,即分塊算法。分塊算法的基本思想是將兩個(gè)大矩陣分成若干個(gè)小矩陣,然后對(duì)每對(duì)小矩陣進(jìn)行乘法運(yùn)算,最后將結(jié)果合并成一個(gè)大矩陣。這樣可以減少緩存失效的次數(shù),提高運(yùn)算速度。下面給出具體的代碼實(shí)現(xiàn)。
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 1000 // 矩陣的大小
#define B 100 // 分塊的大小
// 生成一個(gè)隨機(jī)矩陣
void generate_matrix(double *A) {
srand(time(NULL));
for (int i = 0; i < N * N; i++) {
A[i] = rand() % 10;
}
}
// 打印一個(gè)矩陣
void print_matrix(double *A) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
printf("%.2f ", A[i * N + j]);
}
printf("\n");
}
}
// 普通的矩陣乘法
void normal_multiply(double *A, double *B, double *C) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
double sum = 0;
for (int k = 0; k < N; k++) {
sum += A[i * N + k] * B[k * N + j];
}
C[i * N + j] = sum;
}
}
}
// 分塊的矩陣乘法
void block_multiply(double *A, double *B, double *C) {
for (int i = 0; i < N; i += B) {
for (int j = 0; j < N; j += B) {
for (int k = 0; k < N; k += B) {
// 對(duì)每個(gè)小矩陣進(jìn)行乘法運(yùn)算
for (int ii = i; ii < i + B && ii < N; ii++) {
for (int jj = j; jj < j + B && jj < N; jj++) {
double sum = 0;
for (int kk = k; kk < k + B && kk < N; kk++) {
sum += A[ii * N + kk] * B[kk * N + jj];
}
C[ii * N + jj] += sum;
}
}
}
}
}
}
// 測(cè)試兩種方法的運(yùn)行時(shí)間
void test_time() {
double *A = malloc(sizeof(double) * N * N);
double *B = malloc(sizeof(double) * N * N);
double *C1 = malloc(sizeof(double) * N * N);
double *C2 = malloc(sizeof(double) * N * N);
generate_matrix(A);
generate_matrix(B);
clock_t start, end;
start = clock();
normal_multiply(A, B, C1);
end = clock();
printf("Normal multiply time: %.3f s\n", (double)(end - start) / CLOCKS_PER_SEC);
start = clock();
block_multiply(A, B, C2);
end = clock();
printf("Block multiply time: %.3f s\n", (double)(end - start) / CLOCKS_PER_SEC);
free(A);
free(B);
free(C1);
free(C2);
}
// 主函數(shù)
int main() {
test_time();
return 0;
}
C語(yǔ)言相關(guān)課程推薦:C語(yǔ)言相關(guān)課程